
Janis Griffin

Senior Database
Consultant

Top 5 PostgreSQL
Query Tuning Tips!

Who Am I?
Current – 30+ Years in Oracle®, DB2®, ASE,
SQL Server®, MySQL®, PostgreSQL

DBA and Developer

Janis.Griffin@quest.com

X - @DoBoutAnything

• Specialize in Performance Tuning

• Customers Common Question: How do I tune it?

Agenda

• Challenges of Tuning

• My 5 Tips

– Monitor Wait Time

– Review the Explain Plan

– Gather Object Information

– Find the Driving Table

– Engineer out the Stupid

• Several Case Studies

Challenges of Tuning

• SQL Tuning is Hard
– Who should tune – DBA or Developer

– Which SQL to tune

• Requires Expertise in Many Areas
– Technical – Plan, Data Access, SQL Design

– Business – What is the Purpose of SQL?

• Tuning Takes Time
– Large Number of SQL Statements

– Each Statement is Different

• Low Priority in Some Companies
– Vendor Applications

– Focus on Hardware or System Issues

• Never Ending

Monitor Wait Time – All levels

Monitor Wait Time – Statement Level

Review the Explain Plan

• EXPLAIN Command - explain description & options

– Gives estimated costs (start_up / total cost) as it doesn’t actually run it

• EXPLAIN analyze - what is explain cost

– Executes the query so actual run time statistics are shown

https://www.postgresql.org/docs/current/sql-explain.html
https://scalegrid.io/blog/postgres-explain-cost/

Examine the Explain Plan

• Find Expensive Operators

– Examine costs and row counts (shows the # of rows processed – not what it evaluated)

o Need to look at # rows removed

o Gives an estimate of resources (CPU and disk I/O)

– Look for Seq Scan or Index Scan

• Review the Filter Conditions

– Know which step filtering predicate is applied

• Review Join Methods

– Nested Loops join: Usually efficient for smaller data sets

– Hash Join: Useful on very large data sets (DW)

– Merge Join: Efficient for larger data sets

Explain Plan - Look for Common Mistakes

• Identify Common Mistakes

– Using functions on indexed columns

o In WHERE, ON & HAVING clause

o Create a Functional Index instead

> Create index lower_title_idx on film(lower(title));

– Nested views

o One view calling or joining to other views

– Use of cursors or row by row processing

• Missing or Poor Indexing

• Problems Outside of the Plan

– Missing or stale statistics

– Database misconfiguration

– No database constraints

Graphical Explain Plan

Gather Object Information

• Understand objects in explain plans

– Table Definitions & Sizes

o Is it a View?

> Get underlying definition

o Number of Rows / Partitioning?

– Examine Columns in Where Clause

o Know the Cardinality of columns

o Is there Data Skew

> Consider partial index

o Are there indexes on the join / filtering columns

– Index & Constraint Definitions

o Entity Relationship Diagrams (ERDs) can help

• Statistics Collection Configuration

– Analyze / Vacuum

Query Planner Settings

Figure out what the
Optimizer/Planner
knows!

https://www.postgresql.org/docs/current/runtime-config-query.html

Case Study

Who registered yesterday
for SQL Tuning Class?

1

Who registered yesterday for SQL Tuning

PREPARE billing (timestamp,timestamp) as

SELECT s.fname, s.lname, r.signup_date

FROM test.student s

INNER JOIN test.registration r ON s.student_id = r.student_id

INNER JOIN test.class c ON r.class_id = c.class_id

WHERE c.name = 'SQL TUNING'

AND r.signup_date BETWEEN $1 AND $2

AND r.cancelled ='N';

Using Explain on Prepared Statements (version 16+)

• Prepared Statements & PL/pgSQL functions use Cached Plans

– Postgres does not automatically cache plans for standard SQL statements

Explain (Analyze, Buffers)

PKs / FKs only

Review Table & Indexes

of Rows

class 1,000

student 10,000

registration 79,981

Find the Driving table

• Need to know the size of the actual data sets in each step

– In Joins (Right, Left, Outer)

– What are the filtering predicates

– When is each filtering predicate applied

o Try to filter earlier rather than later

• Compare size of final result set with # of rows at each step

• Find the driving table

o To reduce buffers (I/O) SELECT s.fname, s.lname, r.signup_date

FROM student s

INNER JOIN registration r ON s.student_id = r.student_id

INNER JOIN class c ON r.class_id = c.class_id

WHERE c.name = 'SQL TUNING'

AND r.signup_date BETWEEN $1 AND $2

AND r.cancelled = 'N'

Joins

Filtering

Predicates

SQL Diagramming

• Great Book “SQL Tuning” by Dan Tow

– Oldie but a goodie that teaches SQL Diagramming

– http://www.singingsql.com registration

student class

5

1

30

1

5%

.2%

select count(1) from registration where cancelled = 'N'
and signup_date between ‘2022-12-10 00:00' and ‘2022-12-11 00:00'

4344 / 79,981 * 100 = 5.43%

select count(1) from class where name = 'SQL TUNING’

2 / 1000 * 100 = .2%

Drive the Query with Class

• CREATE INDEX cl_name ON test.class(name);

Why Seq Scan on Registration?

• Can’t use Primary Key as class_id is not left leading column

• Not much difference in throughput – 6k vs 5.4k (685 vs 695 buffers)

– Needs more information to drive by Class

Add Index on Registration (Class_id)

• create index REG_ALT on test.registration(class_id);

Add Covering Index on Registration

• create index REG_ALT on test.registration(class_id, student_id, signup_date) include (cancelled);

Shared Hits

IX 1: 695

IX 2: 328

IX 3: 183

Case Study

Flights by City & Day of Week

2

SQL Taking the Most Time

Flights by City & Day of Week

CREATE OR REPLACE PROCEDURE

get_pop_flight(_city varchar,_beg_date date, _end_date date,_day_of_week varchar, INOUT pop_flights refcursor)

LANGUAGE 'plpgsql'

AS $BODY$

BEGIN

OPEN pop_flights FOR SELECT o.carrier, uc.description AS carrier_name, o.fl_date,o.fl_num,o.tail_num

,ao.description AS origin_airport,co.Description AS origin_city ,ad.description AS destination_airport

,cd.Description AS destination_city ,w.Description Day_of_Wed

FROM public.t_ontime o

INNER JOIN L_UNIQUE_CARRIERS AS uc ON uc.Code = o.UNIQUE_CARRIER

INNER JOIN L_AIRPORT_ID AS ao ON ao.Code = o.ORIGIN_AIRPORT_ID

INNER JOIN L_AIRPORT_ID AS ad ON ad.Code = o.DEST_AIRPORT_ID

INNER JOIN L_CITY_MARKET_ID AS co ON co.Code = o.ORIGIN_CITY_MARKET_ID

INNER JOIN L_CITY_MARKET_ID AS cd ON cd.Code = o.DEST_CITY_MARKET_ID

INNER JOIN L_WEEKDAYS AS w ON w.Code = o.DAY_OF_WEEK

where fl_date BETWEEN _beg_date AND _end_date

AND co.Description = _city

AND w.Description = _day_of_week;

END;

$BODY$;

BEGIN;
CALL public.get_pop_flight('Little Rock, AR','2015-02-01','2015-0 16','Sunday','pop_flights');
fetch all in "pop_flights";
COMMIT;

Star Schema

• US DOT - On-time Performance

L_UNIQUE_CARRIERS: 1620
L_AIRPORT_ID: 6438
L_CITY_MARKET_ID: 5823
L_WEEKDAYS: 8
T_ONTIME: 6784044

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

Examine the Explain Plan

2.07seconds

Find the Driving Table

select count(1) from t_ontime where origin_city_market_id = 32600;

select 12953.000/6666016.000 * 100; = .194 or .2%

Select count(1) from t_ontime where fl_date

between '2015-12-01 00:00:00.000' and'2015-12-31 00:00:00.000‘;

select 469717.00 / 6666016.00 * 100; = 7.04 or 7%

select count(1) from t_ontime where day_of_week = 1;

select 987647.00/6666016.00 * 100; = 14.81 or 15%

Filtering Selectivity

O

.2%

uc

co

w

ao

ad

cd

7%

15%

Tune the Query

• Create index on T_ONTIME & L_CITY_MARKET_ID

– Create index CO_MARKET_DESC on public.L_CITY_MARKET_ID(description);

– create index OCO_MARKET_DESC on public.T_ONTIME(origin_city_market_id);

– create unique index PK_CITY_MARKET on public.L_CITY_MARKET_ID(code);

Adjust the index

• Create index OCO_MARKET_DESC_FL_DATE on public.T_ONTIME(origin_city_market_id, fl_date);

\

41.047 ms 326.229 ms 2.07 SPrevious>

Engineer out the Stupid

• No Primary or Foreign Keys! (See appendix for more Stupid Things)

Add PKs & FKs

4.28 ms 326.229 ms 2.07 SPrevious> 41.047 ms

Best Average Time

Entire Tuning Effects on Workload

Summary
• Monitor Wait time

• Review the Execution Plan

– Look for Costly Steps

• Gather Object Info

• Find the Driving Table

• Engineer out the Stupid

– Common mistakes

• Compare your Tuning Results

– Brag about Yourself … No one else will!

References & Additional Info

• PostgreSQL Query Optimization - The Ultimate Guide...

• PostgreSQL Cheatsheet

• Dynamic & Collected Statistics Collection Configuration

• Working With Postgres WAL Made Easy 101

• Autovacuum Configuration Information

• Routine Vacuuming & Analyze

• Appendix

• More Stupid Mistakes

• More Explain Common Mistakes

• Examine the Explain Plan of OLAP Queries

Thank YOU!!!

https://www.amazon.com/PostgreSQL-Query-Optimization-Ultimate-Efficient/dp/1484268849
https://gist.github.com/Kartones/dd3ff5ec5ea238d4c546
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-STATS-SETUP
https://hevodata.com/learn/working-with-postgres-wal/:~:text=Write%2DAhead%20Log%20(WAL),data%20about%20data'%20or%20metadata
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html
https://www.postgresql.org/docs/current/routine-vacuuming.html.html

More Stupid Mistakes

• Not using appropriate indexes slows query & increases database workload

– Try using SQL Diagraming techniques to find the best index to drive the least amount of data required

– Too many indexes can increase the time spent on DML operations

– Using the wrong type of index - e.g. B-tree index for Full-text search queries

• Data type mismatch

– Comparing columns with wrong data types can lead to errors or incorrect results (implicit conversions)

– Make sure that the data types of the columns being compared or combined in the query are compatible

• Not utilizing referential integrity

– Generic table design (i.e. PK - tag, value)

– No primary or foreign keys, etc…

• Common Postgres Beginner Mistakes & Best Practices

• Don't Do This! (PostgreSQL Mistakes & How to Avoid Them

https://dev.to/hackmamba/6-common-postgres-beginner-mistakes-and-best-practices-2ag0
https://www.youtube.com/watch?v=vxuPW4Ottrk

Explain Plan - Look for Common Mistakes

• Identify Common Mistakes
• Using functions on indexed columns

• In WHERE, ON & HAVING clause

• Create a Functional Index instead
> Create index lower_title_idx on film(lower(title));

• Nested views

• One view calling or joining to other views

• Use of cursors or row by row processing

• Missing or Poor Indexing

• Problems Outside of the Plan
• Missing or stale statistics

• Database misconfiguration

• No database constraints

Examine the Explain Plan of OLAP Queries

• Consider using set operations

• Instead of NOT EXISTS or NOT IN – use EXCEPT

• Instead of EXISTS or IN – use INTERSECT

• Instead of complex OR - use UNION

• Review join order, try for most selective join first

• Avoid multiple scans on same table

• Sometimes a design issue where generic table is designed

• PK, tag, value

• Consider Temp tables, CTEs & Materialized views on OLAP queries

• No indexes or statistics on temp tables – be careful of large temp tables

• Can cause excessive I/O because of writes to disk

• CTEs can prevent Optimizer from choosing join order

• Dombrovskaya, Henrietta; Bailliekova, Anna. PostgreSQL Query Optimization: The Ultimate Guide to Building Efficient
Queries (p. 121). Apress. Kindle Edition.

More Infor on Wait Events

• RDS for PostgreSQL wait events

• Aurora PostgreSQL wait events

• https://www.postgresql.org/docs/current/monitoring-stats.html

– Blocking Locks Query
select pid,

usename,
pg_blocking_pids(pid) as blocked_by,
query as blocked_query

from pg_stat_activity
where cardinality(pg_blocking_pids(pid)) > 0;

– Waiting to read data from the client (either too much data or client is slow)
select datname, pid, usename, application_name, wait_event,

wait_event_type, query_start, state_change, state, query
from pg_catalog.pg_stat_activity;

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Tuning.concepts.summary.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Tuning.concepts.summary.html
https://www.postgresql.org/docs/current/monitoring-stats.html

