Indexes in
PostgreSQL

Overview of indexing in
PostgreSQL database

servicenow.

Agenda

Intro
Overview
Types of indexes
MySQL differences
B*Tree in detail
Indexing for query tuning
Functional & partial indexes
Other index types
Q&A

Indexes - overview

Index: an object by which we can retrieve specific rows (data) faster.

Index is a pointer to data in a table

Can be created using one or multiple columns

Stored on disk as a separate object

Consumes significant disk space for big tables

Can be unigue or non-unigque

Adds overhead for DML operations and query planning
All indexes in PostgreSQL are secondary indexes

V VV VYV V V V V

“An index makes a query fast” still applies in PostgreSQL

servicenow.

Indexes - overview

Index points to Table

friends_name_asc

Friends

name

Andrew

Blake

Dave

Evan

Matt

Nick

Todd

Zack

city
San Francisco
Oakland
Blacksburg
Chicago
Atlanta
Detroit
New York City

Seattle

Indexes - overview

PostgreSQL has a lot of different index types available out of the box!

e o @

servicenow.

Indexes - overview

But most of them are easy to understand:

Most common index type Geometry GiST extension / ++

B-Tree

Fast to build & small

Text search, arrays, JSON

servicenow.

PostgreSQL vs MySQL: differences

servicenow.

PostgreSQL vs MySQL - differences

There is one important thing we should be aware of, coming from MySQL / MariaDB.

Default table organization in InnoDB:

> In MySQL (InnoDB), each table is organized via Clustered Index

>

>
>
>

A\

Oracle term: [0T (Index Organized Table)

What it means: data is stored in a B-tree structure, organized by PK

Data is sorted by the Primary Key of each row

If no PK or UNIQUE index exists, InnoDB will auto-generate a hidden clustered
index (GEN_CLUST INDEX)

Each secondary index includes the PK + the secondary index columns

Significant index size implications for wide PK

servicenow.

PostgreSQL vs MySQL - differences

Default table organization in PostgreSQL:

> In PostgreSQL, each table is a heap (same as Oracle)
> What it means: data is stored unsorted (as a heap object)
» All indexes are secondary indexes

» implication: each index is stored separately from the table main data
» PK of the table is NOT stored with the index
> Less worries concerning the size / width of the Primary Key
» Each row retrieval requires fetching data from both the index and the heap
» Heap-access portion may involve a lot of random I/O

» Oracle equivalent: TABLE ACCESS BY INDEX ROWID

servicenow.

B-Tree indexes

servicenow.

B-Tree: index overview

Main features of B-Tree indexes in PostgreSQL:

A\

vV V V V VY

B-Tree: self-balancing tree data structure

Balanced = each leaf page separated from root by the same
number of internal pages (consistent search time for any value)
Good for data that can be sorted (e.g. numbers or characters)
Think: greater >, less <, equal = (but also >= and <=)

... but also works for: LIKE, ORDER BY, GROUP BY, JOIN

The only index supporting index-only scans

Index entry deduplication (PostgreSQL 13)

servicenow.

B-Tree: tree structure

servicenow.

B-Tree: equality search

servicenow.

B-Tree: range search

servicenow.

Indexing for query tuning

servicenow.

Indexing for query tuning

Next slides will cover the core rules for efficient indexing in PostgreSQL.

General rules to follow:

» Single-column index for single WHERE predicate
Composite index for multiple WHERE predicates against a single table
Range predicates (>, >=, <, <=) can be only used as a last index column
LIKE only works if specified as: ... LIKE (‘bob%') — will work for *7.bob%'’
Indexing (a, b) helps with GROUP BY (a, b)
Indexing (a, b) helps with ORDER BY (a, b)
Works for GROUP BY + ORDER BY only if columns match for both
Helps with JOIN operations (depends on JOIN algorithm used)

vV V V ¥V VY VY VY

servicenow.

Indexing for equality

How composite index helps with equality predicates:

» Composite index DDL & example queries:

create index idxl on t1 (a, b, c);

select ... from tl where
select ... from tl1l where
select ... from tl where
select ... from tl where
select ... from tl where
select ... from tl where

and
and
and
and
and

| A | P |

Lines 3-7: index idx1 fully used in all the examples
Line 6: order does not matter if all predicates are equality
Line 8: no filter exists for column d

servicenow.

Indexing for ranges

Rule of thumb #1: composite index can be used to cover range predicates ONLY if it's the

right-most column of the index.

range predicates - index
select ... from tl1l where a
select ... from tl1l where a
select ... from tl where a

range predicates - index
select ... from tl1l where a
select ... from tl1l where a
select ... from tl where a

range predicates - index
select ... from t1l where b
select ... from tl1 where b
select ... from tl1l where c

Line 9: index used for a, not used for b
Line 11: index used for a and b, not used for ¢
Lines 14-16: no predicate against a, index can’t be used

servicenow.

Indexing for LIKE

Rule of thumb #2: treat LIKE ‘abc%’ similar to how you would treat a range scan.

LIKE predicate is similar to range

psql> explain select x from bears where name like 'bob%';

QUERY PLAN

Index Scan using nfw on bears (cost=0.43..4.45 rows=1 width=25)
Index Cond: (((name)::text >= 'bob'::text) AND ((name)::text < 'boc'::text))
Filter: ((name)::text ~~ 'bob%'::text)

(3 rows)

Line 3: bears table has 5 columns: id, name, fur, birth, weight
Line 7: index NFW covers (nhame, fur, weight)
Line 8: LIKE is converted intfo (hame >= ‘bob’ and name < ‘boc’)

servicenow.

Indexing for LIKE
Rule of thumb #3: all the indexing benefits are lost if we use ‘' bob%' instead of ‘bob%’:

LIKE doesn't work with index if double % is used

psql> explain select x* from bears where name like '%bob%';

QUERY PLAN

Seq Scan on bears (cost=0.00..21488.20 rows=1 width=25)
Filter: ((name)::text ~~ '%bob%'::text)
(2 rows)

Line 3: predicate ‘bob%’ replaced with ' bob%'
Line 7: sequential scan on bears table instead of an index
Line 7: cost skyrockets to 21488

servicenow.

Indexing for GROUP BY & ORDER BY

Rule of thumb #4: composite index on (q, b, c) will help with GROUP BY & ORDER BY

operations on indexed columns:

SELECT ...
SELECT ...
SELECT LI B)

SELECT ...
SELECT ...

SELECT ...

but also!

SELECT ... FROM - a ORDER BY a;

SELECT ... FROM s a, b ORDER BY a, b;
SELECT ... FROM % a, b, c ORDER BY a, b, c;

Lines 1-3: GROUP BY matching column list, order matters

Lines 5-7: ORDER BY matching column list, order matters

Line 10-12: GROUP BY and ORDER BY combined, order matters
Note: ORDER BY needs to be left-side subset of GROUP BY

servicenow.

Functional & partial indexes

servicenow.

Functional indexes

Functional index: index based on a result of a function, applied to one or more columns in
the table.

» Simple example:

SELECT x FROM t1 WHERE lower(coll) = 'value';

CREATE INDEX idxl ON t1 (lower(coll));

» More complex example:

SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith';
CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

Line 1: lower function would make regular index invalid for this query
Line 4: string concatenation — basic index won't work
Typical examples: lower(), upper(), trim(), length(), substr()

servicenow.

Partial indexes

Partial index: index build on a subset of a table.

> Defined by a conditional expression (partial index predicate)
» Contains entries only for rows that satisfy the predicate
» Good use case: avoid indexing common / popular values
« Job queue - no need to index completed jobs
« Application processing system — index only ‘in progress’ applications

» example: . .
CREATE INDEX 1idx_partial

ON task(sys_created_on)
WHERE active = 1;

index_name | size_mb
________________ +_______.__

sys_created_on |
partial_idx |

servicenow.
Include indexes

Include index: make a distinction between columns kept in the entire index or only leaf nodes.
» Key columns are contained in the entire index
» Include columns are only contained in the leaf nodes
» Use case:
 #1:include column is needed to provide an Index Only Scan forthe query
AND

« #2:include columnis needed for filtering, sorting or joining

) create index idx_include
> example: ON task (sys_created_on)

INCLUDE (sys_id);

Index idx_include will work for: S Bys.10, TR Task

WHERE sys_created_on > ‘2024-10-03’;

Unique indexes can use INCLUDE columns to add columns without
impacting the UNIQUE constraint.

servicenow.

Other index types

servicenow.

BRIN indexes

BRIN is a Block Range Index — designed for very large tables with high data correlation.
» BRIN works best if physical table layout and column ordering is strongly correlated
> Very low cost of INSERT operations

> Extremely small index sizes

oldest —m8 ——F S Vewest

Typical use cases:

1a49% 1951 1951 1963 1964 1972 19713
> Logging fables DEDEE| DEEnE (DEEER
> loT / sensors Fage! Page 2 Page 3 Page 4

> Time series data

One entry for each range of pages (very small size)
Number of pages is configurable, 128 is the default
Can be 1000x smaller than B-Tree

servicenow.

BRIN indexes - size & performance

BRIN vs B-Tree size:

Performance:

Relation

table_size

btree_random_size
brin_random_size
btree_sequential_size

brin_sequential_size

Rows BTree Rand
100 0.6 ms
1000 5ms

10000 22 ms

100000 98 ms

BTree Seq
0.5ms
2ms

13 ms

85 ms

BRIN Rand

211 ms

207 ms

221 ms

250 ms

BRIN Seq
11 ms
10 ms
15ms

67 ms

servicenow.

Hash indexes

Hash index: index used only for equality predicates (WHERE x = value):

» 32-bit hash code derived from the value of the indexed column

» Good use case - long / wide columns: URLs, UUIDs etc.

> Safe to use from PostgreSQL 10+ to WAL in 9.6!)
Pros:
« Fast search performance « Limited for range queries
« Reduced disk I/O * No ordering

Hash Collisions

« Potentially smaller size than B-Tree

« Different hash functions

servicenow.

GIN indexes

GIN index — Generalized Inverted Index: preferred approach for full-text indexing in
PostgreSQL.

» GIN use cases:
* Array columns
« Text Search documents (tsvector)

« Binary JSON documents (jsonb)

» Full text search is based on a match operator @@
> The operator returns true if a tsvector (document) matches a tsquery (query)

» Order does not matter

servicenow.

Why my index is not working?

There are 3 common reasons why an index is not used:

» Wrong index ordering

* WHERE b > 3 andc = 0 fora(a, b, c)compositeindex
» Function / expression

* WHERE upper (name) = ‘Bob’;

* WHERE length (string) > 20;
» Data type / collation mismatch

* WHERE 1d = ‘7'

: sometimes the index is not used because it's not worth itl
Always check cardinality / selectiveness.

servicenow.

Summary

Summary / closing thoughts:
» Indexing in PostgreSQL is still a critical part of database performance
» B-Tree indexes will be 0%+ of use cases
> No need for 3@ party tools for building indexes — no exclusive locks
 CREATE INDEX .. CONCURRENTLY;
> Indexes can be created in PARALLEL
« Automatic decision based onmax parallel maintenance workers
» Consider 3% - 10% as a threshold to make the index worth it
« For any potential index on column A and table T, compare:
 SELECT count(distinct A) from T;
 SELECT count(*) from T where A = <value>;

* SELECT count(*) from T;

servicenow.

Q& A

servicenow.

Thank you.

servicenow.

