
Indexes in
PostgreSQL
Overview of indexing in
PostgreSQL database

Agenda
Intro
Overview
Types of indexes
MySQL differences
B*Tree in detail
Indexing for query tuning
Functional & partial indexes
Other index types

Q & A

Indexes - overview
Index: an object by which we can retrieve specific rows (data) faster.

Ø Index is a pointer to data in a table
Ø Can be created using one or multiple columns
Ø Stored on disk as a separate object
Ø Consumes significant disk space for big tables
Ø Can be unique or non-unique
Ø Adds overhead for DML operations and query planning
Ø All indexes in PostgreSQL are secondary indexes
Ø “An index makes a query fast” still applies in PostgreSQL

Indexes - overview

Indexes - overview
PostgreSQL has a lot of different index types available out of the box!

B-Tree

Hash BRIN GIN

GiST SP-GiST

Indexes - overview
But most of them are easy to understand:

B-Tree

Hash BRIN GIN

GiST SP-GiST

Most common index type Geometry GiST extension / ++

Only equality predicates Text search, arrays, JSON Fast to build & small

PostgreSQL vs MySQL: differences

PostgreSQL vs MySQL - differences

There is one important thing we should be aware of, coming from MySQL / MariaDB.

Default table organization in InnoDB:

Ø In MySQL (InnoDB), each table is organized via Clustered Index

Ø Oracle term: IoT (Index Organized Table)

Ø What it means: data is stored in a B-tree structure, organized by PK

Ø Data is sorted by the Primary Key of each row

Ø If no PK or UNIQUE index exists, InnoDB will auto-generate a hidden clustered

index (GEN_CLUST_INDEX)

Ø Each secondary index includes the PK + the secondary index columns

Ø Significant index size implications for wide PK

PostgreSQL vs MySQL - differences

Default table organization in PostgreSQL:

Ø In PostgreSQL, each table is a heap (same as Oracle)

Ø What it means: data is stored unsorted (as a heap object)

Ø All indexes are secondary indexes

Ø implication: each index is stored separately from the table main data

Ø PK of the table is NOT stored with the index

Ø Less worries concerning the size / width of the Primary Key

Ø Each row retrieval requires fetching data from both the index and the heap

Ø Heap-access portion may involve a lot of random I/O

Ø Oracle equivalent: TABLE ACCESS BY INDEX ROWID

B-Tree indexes

B-Tree: index overview

Main features of B-Tree indexes in PostgreSQL:

Ø B-Tree: self-balancing tree data structure

Ø Balanced = each leaf page separated from root by the same

number of internal pages (consistent search time for any value)

Ø Good for data that can be sorted (e.g. numbers or characters)

Ø Think: greater >, less <, equal = (but also >= and <=)

Ø … but also works for: LIKE, ORDER BY, GROUP BY, JOIN

Ø The only index supporting index-only scans

Ø Index entry deduplication (PostgreSQL 13)

B-Tree: tree structure

B-Tree: equality search

B-Tree: range search

Indexing for query tuning

Indexing for query tuning

Next slides will cover the core rules for efficient indexing in PostgreSQL.

General rules to follow:

Ø Single-column index for single WHERE predicate

Ø Composite index for multiple WHERE predicates against a single table

Ø Range predicates (>, >=, <, <=) can be only used as a last index column

Ø LIKE only works if specified as: … LIKE (‘bob%’) – will not work for ‘%bob%’

Ø Indexing (a, b) helps with GROUP BY (a, b)

Ø Indexing (a, b) helps with ORDER BY (a, b)

Ø Works for GROUP BY + ORDER BY only if columns match for both

Ø Helps with JOIN operations (depends on JOIN algorithm used)

Indexing for equality

How composite index helps with equality predicates:

Ø Composite index DDL & example queries:

Lines 3-7: index idx1 fully used in all the examples
Line 6: order does not matter if all predicates are equality
Line 8: no filter exists for column d

Indexing for ranges

Rule of thumb #1: composite index can be used to cover range predicates ONLY if it’s the

right-most column of the index.

Line 9: index used for a, not used for b
Line 11: index used for a and b, not used for c
Lines 14-16: no predicate against a, index can’t be used

Indexing for LIKE

Rule of thumb #2: treat LIKE ‘abc%’ similar to how you would treat a range scan.

Line 3: bears table has 5 columns: id, name, fur, birth, weight
Line 7: index NFW covers (name, fur, weight)
Line 8: LIKE is converted into (name >= ‘bob’ and name < ‘boc’)

Indexing for LIKE

Rule of thumb #3: all the indexing benefits are lost if we use ‘%bob%’ instead of ‘bob%’:

Line 3: predicate ‘bob%’ replaced with ‘%bob%’
Line 7: sequential scan on bears table instead of an index
Line 7: cost skyrockets to 21488

Indexing for GROUP BY & ORDER BY

Rule of thumb #4: composite index on (a, b, c) will help with GROUP BY & ORDER BY

operations on indexed columns:

Lines 1-3: GROUP BY matching column list, order matters
Lines 5-7: ORDER BY matching column list, order matters
Line 10-12: GROUP BY and ORDER BY combined, order matters
 Note: ORDER BY needs to be left-side subset of GROUP BY

Functional & partial indexes

Functional indexes

Functional index: index based on a result of a function, applied to one or more columns in

the table.

Ø Simple example:

Ø More complex example:

Line 1: lower function would make regular index invalid for this query
Line 4: string concatenation – basic index won’t work
 Typical examples: lower(), upper(), trim(), length(), substr()

Partial indexes

Partial index: index build on a subset of a table.

Ø Defined by a conditional expression (partial index predicate)

Ø Contains entries only for rows that satisfy the predicate

Ø Good use case: avoid indexing common / popular values

• Job queue – no need to index completed jobs

• Application processing system – index only ‘in progress’ applications

Ø example:

Include indexes

Include index: make a distinction between columns kept in the entire index or only leaf nodes.

Ø Key columns are contained in the entire index

Ø Include columns are only contained in the leaf nodes

Ø Use case:

• #1: include column is needed to provide an Index Only Scan for the query

AND

• #2: include column is not needed for filtering, sorting or joining

Ø example:

Index idx_include will work for:

Unique indexes can use INCLUDE columns to add columns without
impacting the UNIQUE constraint.

Other index types

BRIN indexes

BRIN is a Block Range Index – designed for very large tables with high data correlation.

Ø BRIN works best if physical table layout and column ordering is strongly correlated

Ø Very low cost of INSERT operations

Ø Extremely small index sizes

Typical use cases:

Ø Logging tables

Ø IoT / sensors

Ø Time series data

- One entry for each range of pages (very small size)
- Number of pages is configurable, 128 is the default
- Can be 1000x smaller than B-Tree

BRIN indexes – size & performance

BRIN vs B-Tree size:

Performance:

Hash indexes

Hash index: index used only for equality predicates (WHERE x = value):

Ø 32-bit hash code derived from the value of the indexed column

Ø Good use case – long / wide columns: URLs, UUIDs etc.

Ø Safe to use from PostgreSQL 10+ (not written to WAL in 9.6!)

Pros:

• Fast search performance

• Reduced disk I/O

• Potentially smaller size than B-Tree

Cons:

• Limited for range queries

• No ordering

• Hash Collisions

• Different hash functions

GIN indexes

GIN index – Generalized Inverted Index: preferred approach for full-text indexing in

PostgreSQL.

Ø GIN use cases:

• Array columns

• Text Search documents (tsvector)

• Binary JSON documents (jsonb)

Ø Full text search is based on a match operator @@

Ø The operator returns true if a tsvector (document) matches a tsquery (query)

Ø Order does not matter

Why my index is not working?

There are 3 common reasons why an index is not used:

Ø Wrong index ordering

• WHERE b > 3 and c = 0 for a (a, b, c) composite index

Ø Function / expression

• WHERE upper(name) = ‘Bob’;

• WHERE length(string) > 20;

Ø Data type / collation mismatch

• WHERE id = ‘7’

Remember: sometimes the index is not used because it’s not worth it!

Always check cardinality / selectiveness.

Summary

Summary / closing thoughts:

Ø Indexing in PostgreSQL is still a critical part of database performance

Ø B-Tree indexes will be 90%+ of use cases

Ø No need for 3rd party tools for building indexes – no exclusive locks

• CREATE INDEX … CONCURRENTLY;

Ø Indexes can be created in PARALLEL

• Automatic decision based on max_parallel_maintenance_workers

Ø Consider 3% - 10% as a threshold to make the index worth it

• For any potential index on column A and table T, compare:

• SELECT count(distinct A) from T;

• SELECT count(*) from T where A = <value>;

• SELECT count(*) from T;

Q & A

Thank you.

