Complete a Short Survey

Responses for informational purposes only

Index Strategy Guide

Greg Dostatni DBA @ Command Prompt, Inc.
Postgres Conference 2025

Goals

e This is a guide for making
decisions about indexes

e Everything is about trade-offs
and balance

e Questions are encouraged

But wait.. there is more!

e Data driven - experiments are
included

e Data driven, even if data is
wrong (5%, 50%, 500%)

e Presentation notes include

commands, and setup hints

Indexes are a tradeoff

e Indexes trade disk space and increased IO during changes
for reduced |O when accessing existing records.

e PostgreSQL needs to decide to use an index

e Use explain on a query to check what PostgreSQL thinks is

the best plan.

Data Page layout

Page Header (24 bytes) SELECT relname, relking,
ItemIdData
l reltuples / relpages AS
Free Space avg_tuples_per_page

FROM pg_class
tems WHERE

relpages>0 and reltuples>100;

Special Space

Statistics

e pg class -> reltuples /relpages
e pg_stat_all_tables -> last_autoanalyze, last_analyze, table usage

e pg_stats -> column frequent values and frequencies, avg width

SELECT tablename, atthame, avg_width,
most_common_vals, most_common_freqs

FROM pg_stats

WHERE tablename='"test’;

Irade-offs

Data distribution

== DataDistribution_p01_index == DataDistribution_p05_index DataDistribution_p10_index
w= DataDistribution_p20_index == DataDistribution_p90_index
1000
[——— ——— —— —— e o e S ——
Q
5
= 750
S~
wn
- 500
O
.
O
%
- 250
O I T T o i T
I: ” - S
e o — i ————— A P Nt o -
0
0 1000 2000 3000

Data distribution - partial indexes

== DataDistribution_p01_index == PartialDistribution_p01_index
PartialDistribution_p05_indexonly == PartialDistribution_p05_index

1000
Q
=

= 750
&
~
Vs

2 500
O
S
o
A

c 250

(g /\/WW\/W/_\N\/\/V\/\/_V_\/_\/_V_

-
|_

0

0 1000 2000 3000

Time (s)

Index only access

== PartialDistribution_p05_indexonly == DataDistribution_p05_indexonly
PartialDistribution_p05_index == DataDistribution_p05_index

1000

st LA T R R
) wa — — e e ~—— e
=
= 750
&
S~
Vs
O 500
O
)
o
A
- 250
(g e SN e OO T O N O O NS SOOI OO SOOI\ SIS
-
—

0

0 1000 2000 3000

Time (s)

Index size

w= index_size_1 == index_size_10 index_size_13 == index_size_18
3000000
cu \&(4 .
£ i
= Ui A N
< 2000000 , ~
&
~_ v
wn
c
S | |
> 1000000 | “
(g
wn
c
(O
| -
|_
0
0 1000 2000 3000

Time (s)

Data types

== data_types_uuid == data_types_uuid_text

3000000

2000000

1000000

Transactions / minute

0 1000 2000 3000

Time (s)

Functions are had!

== function_test_baseline == function_test_lower function_test_lower_idx
3000000
A/ B et

Q
)
>

< 2000000
S~
wn
c
O

> 1000000
(g
wn
c
(O
| -
|_

0

0 1000 2000 3000

Time (s)

Functions are great!

== md5_bhaseline == md5_address_name_category md5_address_name_category_md5
w= md5_address

/ il =

300000

200000

100000

Transactions / minute

0 1000 2000 3000

Time (s)

Cost of writing

300000

200000

100000

Transactions / minute

w= writes_baseline == writes_haseline_w_indexes

1000 2000 3000

Maintenance / hloat

BT - Bloated Table (2.5 x total size), VT - Vacuumed Table

> 3000

A

2000
1000

oy \ suoioesueld|

mud {1111

Experiment_Duration

Resources

Test Table

CREATE TABLE test (

1d SERIAL PRIMARY KEY, identifier uuid,

text identifier text, category int,

subcategory int, p 01 int,

p 05 1int, p 10 int,

p 15 1int, p 20 1int,

p 25 1int, p 50 1int,

p 75 1int, p 90 1int,

name VARCHAR (50) NOT NULL, emall VARCHAR (100) NOT NULL,
-- Other user-related columns

bio TEXT, phone number VARCHAR (20),
address VARCHAR (200), website url VARCHAR (200),

public key TEXT);

Use the Index, Luke!

http://use-the-index-luke.com

http://use-the-index-luke.com

Recap

e Everything is about trade-offs
e There are many factors including:
o are statistics up to date?
o shared buffers / file cache
o How many IO operations to access
required data?

?

1011S

Quest

COMMAND PROMPT, INC.

+1 503 667 4564

www.commandprompt.com/contact-us)N

EXPERTS IN POSTGRES AND OPEN SOURCE INFRASTRUCTURE .

reatin |
Executing pgbench with custom code
Pagbench custom script strategy

Creating test table

This code will set up a testing table of any size. Unfortunately this code is not really all that
efficient when it comes to creating millions of rows. That’s something | should improve at some
point in the future.

In the meantime, it will work, eventually.

num_records=100000000 should result in an approximately 26 GB base table. At various times
the indexes and bloat can result in a much larger database.

Unset

-- commandline example
-- psql -v num_records=1000 -f test_table.sql

-- Set a default value if num_records is not provided
-- Set a default value if num_records is not provided
-- Step 1:
\set num_records :num_records
-- If we defined num_records on commandline, it will just be set again
-- if it was not defined, it will be set to the string :num_records
-- Step 2:
SELECT CASE
WHEN :'num_records'= ':num_records'
THEN '100000000' -- 80000000 -- switch to 100,000,000 records and re-do
ELSE :'num_records'

END: :numeric AS "num_records" \gset

--TODO: add tables with common first names, last names, city names, etc.
-- use select first_name from rnd order by random();

create extension if not exists pgcrypto;
CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

CREATE OR REPLACE FUNCTION generate_random_text(paragraphs INTEGER,
words_per_paragraph INTEGER)
RETURNS TEXT AS $$
DECLARE
result TEXT := '"';
paragraph TEXT;
word TEXT;
i INTEGER;
j INTEGER;
BEGIN
FOR i IN 1..paragraphs LOOP
paragraph := '';
FOR j IN 1..words_per_paragraph LOOP
word := '";
FOR k IN 1..random() * 10 + 1 LOOP
word := word || chr(65 + floor(random() * 26)::INTEGER);
END LOOP;
paragraph := paragraph ||
END LOOP;
result := result || paragraph || E'\n\n";
END LOOP;
RETURN result;
END;
$$ LANGUAGE plpgsql;

|| word;

-- Base table

CREATE TABLE test (
id SERIAL PRIMARY KEY,
identifier uuid,
text_identifier text,
category int,
subcategory int,
p_01 int,
p_05 int,
p_10 int,
p_15 int,
p_20 int,

p_25 int,

p_50 int,

p_75 int,

p_90 int,

name VARCHAR(50) NOT NULL,
email VARCHAR(100) NOT NULL,
-- Other user-related columns
bio TEXT,

phone_number VARCHAR(20),
address VARCHAR(200),
website_url VARCHAR(200),
public_key TEXT

)

INSERT INTO test (identifier, text_identifier, category, subcategory, p_01,
p_05, p_10, p_15,
p_20, p_25, p_59, p_75, p_99, name, email, address)
SELECT
uuid_generate_v4() AS identifier,
uuid_generate_v4()::text AS text_identifier,
(random() * 10 + 1) AS category,
(random() * 10 + 1) AS subcategory,

CASE WHEN random() < ©.081 THEN 1 ELSE © END AS p_01,
CASE WHEN random() < ©.85 THEN 1 ELSE © END AS p_05,
CASE WHEN random() < ©.10 THEN 1 ELSE © END AS p_10,
CASE WHEN random() < ©.15 THEN 1 ELSE © END AS p_15,
CASE WHEN random() < ©.20 THEN 1 ELSE © END AS p_20,
CASE WHEN random() < ©.25 THEN 1 ELSE @ END AS p_25,
CASE WHEN random() < ©.50 THEN 1 ELSE © END AS p_50,
CASE WHEN random() < ©.75 THEN 1 ELSE © END AS p_75,
CASE WHEN random() < ©.90 THEN 1 ELSE © END AS p_90,
generate_random_text(1,3) AS name,
generate_random_text(1,1) || '@ || generate_random_text(1,1) || '.com' AS

email,
generate_random_text(1,10) as address
FROM generate_series(1, :num_records) as i;

Executing pgbench with custom code

Figuring out which parameters can be with pgbench when executing custom code can involve a
bit of trial and error. All my tests were performed with a command similar to this:

Unset

pgbench -d guide -f {test_file} -c 20 -j 4 -T 3600 -n -r -1
--log-prefix=output/{test_name} --aggregate-interval=60 >>
output/pgbench_{test_name}.out 2>/dev/null

Let's go through the parameters:

-d guide connect to the guide database

-f {test_file} executes the desired test file (samples below)
-c 20 Run with 20 concurrent clients

-j4 Each client should run 4 threads

-T 3600 Each test runs for 1 hour (3600 seconds)

-n Do not run vacuum (I do those manually)

-r Report average latency per command

-l Write transaction logs to log file
—log-prefix=output/{test_ name} All outputs get put in the output directory with a specified
test name

—aggregate-interval=60 Aggregate data every 60 seconds

>> output/pgbench_{test name}.out Save pgbench output to an output file
2>/dev/null Do not save the runtime output.

Pgbench custom script strategy

Instead of giving you all the individual scripts, I'm just going to give a simplified guide to writing
custom pgbench scripts.

Should you find results that do not make sense, please let me know. I'd love to find out if | made
a mistake somewhere.

Accessing records via non integer field

At various times we need to access records by text or uuid column. In those cases | will
generally create a random id, look up the field | need and then use that in my lookup or
calculation.

When comparing multiple different scenarios, | will make sure that the corresponding variables
are set in each, in order to make the id lookup consistent in all scenarios.

Unset
\set id random(1, 100000000)

select '''' || identifier::text || as identifier from test where id=:id

\gset

select * from test where text_identifier=:identifier;

This technique can be abstracted to multiple values as well. For example, md5 lookup by
multiple columns.

Unset
\set id random(1, 100000000)

select '''"" || address || '''' as address , category as category, '''' || name
[| "'"" as name from test where id=:id \gset

select * from test where md5(address || '!"' || name || "!'" ||
category::text)::uuid = md5(:address || '!' || :name || "!'' ||

:category: :text)::uuid;

