
Complete a Short Survey

Responses for informational purposes only

Index Strategy Guide

Greg Dostatni DBA @ Command Prompt, Inc.
Postgres Conference 2025

Introduction

Goals
● This is a guide for making

decisions about indexes

● Everything is about trade-offs

and balance

● Questions are encouraged

But wait.. there is more!
● Data driven - experiments are

included

● Data driven, even if data is

wrong (5%, 50%, 500%)

● Presentation notes include

commands, and setup hints

Indexes are a tradeoff
● Indexes trade disk space and increased IO during changes

for reduced IO when accessing existing records.

● PostgreSQL needs to decide to use an index

● Use explain on a query to check what PostgreSQL thinks is

the best plan.

Data Page layout
Page Header (24 bytes)

ItemIdData

Free Space

Items

Special Space

SELECT relname, relkind,

reltuples / relpages AS

avg_tuples_per_page

FROM pg_class

WHERE

relpages>0 and reltuples>100;

Statistics
● pg_class -> reltuples /relpages

● pg_stat_all_tables -> last_autoanalyze, last_analyze, table usage

● pg_stats -> column frequent values and frequencies, avg width

SELECT tablename, attname, avg_width,

most_common_vals, most_common_freqs

FROM pg_stats

WHERE tablename='test' ;

Trade-offs

Data distribution

Tr
an

sa
ct

io
n

s
/

m
in

u
te

Time (s)

Data distribution - partial indexes

Tr
an

sa
ct

io
n

s
/

m
in

u
te

Time (s)

Index only access

Tr
an

sa
ct

io
n

s
/

m
in

u
te

Time (s)

Index size

Tr
an

sa
ct

io
n

s
/

m
in

u
te

Time (s)

Data types

Tr
an

sa
ct

io
n

s
/

m
in

u
te

Time (s)

Functions are bad!

Tr
an

sa
ct

io
n

s
/

m
in

u
te

Time (s)

Functions are great!

Tr
an

sa
ct

io
n

s
/

m
in

u
te

Time (s)

Cost of writing

Tr
an

sa
ct

io
n

s
/

m
in

u
te

Time (s)

Maintenance / bloat

Tr
an

sa
ct

io
n

s
\

h
o

u
r

Resources

Test Table
CREATE TABLE test (
 id SERIAL PRIMARY KEY, identifier uuid,
 text_identifier text, category int,
 subcategory int, p_01 int,
 p_05 int, p_10 int,
 p_15 int, p_20 int,
 p_25 int, p_50 int,
 p_75 int, p_90 int,
 name VARCHAR(50) NOT NULL, email VARCHAR(100) NOT NULL,
 -- Other user-related columns
 bio TEXT, phone_number VARCHAR(20),
 address VARCHAR(200), website_url VARCHAR(200),
 public_key TEXT);

Use the Index, Luke!
http://use-the-index-luke.com

http://use-the-index-luke.com

SUMMARY

Recap
● Everything is about trade-offs

● There are many factors including:

○ are statistics up to date?

○ shared_buffers / file cache

○ How many IO operations to access

required data?

Questions?

COMMAND PROMPT, INC.

EXPERTS IN POSTGRES AND OPEN SOURCE INFRASTRUCTURE

+1 503 667 4564
www.commandprompt.com/contact-us

Unset

Creating test table
Executing pgbench with custom code
Pgbench custom script strategy

Creating test table

This code will set up a testing table of any size. Unfortunately this code is not really all that
efficient when it comes to creating millions of rows. That’s something I should improve at some
point in the future.

In the meantime, it will work, eventually.

num_records=100000000 should result in an approximately 26 GB base table. At various times
the indexes and bloat can result in a much larger database.

-- commandline example
-- psql -v num_records=1000 -f test_table.sql

-- Set a default value if num_records is not provided
-- Set a default value if num_records is not provided
-- Step 1:
\set num_records :num_records
-- If we defined num_records on commandline, it will just be set again
-- if it was not defined, it will be set to the string :num_records
-- Step 2:
SELECT CASE
 WHEN :'num_records'= ':num_records'
 THEN '100000000' -- 800000000 -- switch to 100,000,000 records and re-do
 ELSE :'num_records'
END::numeric AS "num_records" \gset

--TODO: add tables with common first names, last names, city names, etc.
-- use select first_name from rnd order by random();

create extension if not exists pgcrypto;
CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

CREATE OR REPLACE FUNCTION generate_random_text(paragraphs INTEGER,
words_per_paragraph INTEGER)
RETURNS TEXT AS $$
DECLARE
 result TEXT := '';
 paragraph TEXT;
 word TEXT;
 i INTEGER;
 j INTEGER;
BEGIN
 FOR i IN 1..paragraphs LOOP
 paragraph := '';
 FOR j IN 1..words_per_paragraph LOOP
 word := '';
 FOR k IN 1..random() * 10 + 1 LOOP
 word := word || chr(65 + floor(random() * 26)::INTEGER);
 END LOOP;
 paragraph := paragraph || ' ' || word;
 END LOOP;
 result := result || paragraph || E'\n\n';
 END LOOP;
 RETURN result;
END;
$$ LANGUAGE plpgsql;

-- Base table

CREATE TABLE test (
 id SERIAL PRIMARY KEY,
 identifier uuid,
 text_identifier text,
 category int,
 subcategory int,
 p_01 int,
 p_05 int,
 p_10 int,
 p_15 int,
 p_20 int,

 p_25 int,
 p_50 int,
 p_75 int,
 p_90 int,
 name VARCHAR(50) NOT NULL,
 email VARCHAR(100) NOT NULL,
 -- Other user-related columns
 bio TEXT,
 phone_number VARCHAR(20),
 address VARCHAR(200),
 website_url VARCHAR(200),
 public_key TEXT
);

INSERT INTO test (identifier, text_identifier, category, subcategory, p_01,
p_05, p_10, p_15,
p_20, p_25, p_50, p_75, p_90, name, email, address)
SELECT
 uuid_generate_v4() AS identifier,
 uuid_generate_v4()::text AS text_identifier,
 (random() * 10 + 1) AS category,
 (random() * 10 + 1) AS subcategory,
 CASE WHEN random() < 0.01 THEN 1 ELSE 0 END AS p_01,
 CASE WHEN random() < 0.05 THEN 1 ELSE 0 END AS p_05,
 CASE WHEN random() < 0.10 THEN 1 ELSE 0 END AS p_10,
 CASE WHEN random() < 0.15 THEN 1 ELSE 0 END AS p_15,
 CASE WHEN random() < 0.20 THEN 1 ELSE 0 END AS p_20,
 CASE WHEN random() < 0.25 THEN 1 ELSE 0 END AS p_25,
 CASE WHEN random() < 0.50 THEN 1 ELSE 0 END AS p_50,
 CASE WHEN random() < 0.75 THEN 1 ELSE 0 END AS p_75,
 CASE WHEN random() < 0.90 THEN 1 ELSE 0 END AS p_90,
 generate_random_text(1,3) AS name,
 generate_random_text(1,1) || '@' || generate_random_text(1,1) || '.com' AS
email,
 generate_random_text(1,10) as address
FROM generate_series(1,:num_records) as i;

Executing pgbench with custom code

Unset

Figuring out which parameters can be with pgbench when executing custom code can involve a
bit of trial and error. All my tests were performed with a command similar to this:

pgbench -d guide -f {test_file} -c 20 -j 4 -T 3600 -n -r -l
--log-prefix=output/{test_name} --aggregate-interval=60 >>
output/pgbench_{test_name}.out 2>/dev/null

Let’s go through the parameters:
-d guide connect to the guide database
-f {test_file} executes the desired test file (samples below)
-c 20 Run with 20 concurrent clients
-j 4 Each client should run 4 threads
-T 3600 Each test runs for 1 hour (3600 seconds)
-n Do not run vacuum (I do those manually)
-r Report average latency per command
-l Write transaction logs to log file
–log-prefix=output/{test_name} All outputs get put in the output directory with a specified
test name
–aggregate-interval=60 Aggregate data every 60 seconds
>> output/pgbench_{test_name}.out Save pgbench output to an output file
2>/dev/null Do not save the runtime output.

Pgbench custom script strategy
Instead of giving you all the individual scripts, I’m just going to give a simplified guide to writing
custom pgbench scripts.

Should you find results that do not make sense, please let me know. I’d love to find out if I made
a mistake somewhere.

Accessing records via non integer field
At various times we need to access records by text or uuid column. In those cases I will
generally create a random id, look up the field I need and then use that in my lookup or
calculation.

When comparing multiple different scenarios, I will make sure that the corresponding variables
are set in each, in order to make the id lookup consistent in all scenarios.

Unset

Unset

\set id random(1, 100000000)

select '''' || identifier::text || '''' as identifier from test where id=:id
\gset

select * from test where text_identifier=:identifier;

This technique can be abstracted to multiple values as well. For example, md5 lookup by
multiple columns.

\set id random(1, 100000000)

select '''' || address || '''' as address , category as category, '''' || name
|| '''' as name from test where id=:id \gset

select * from test where md5(address || '!' || name || '!' ||
category::text)::uuid = md5(:address || '!' || :name || '!' ||
:category::text)::uuid;

