
Empowering Data Integration with Confidence

Unlock Seamless Logical Replication

From Heterogeneous Databases

A Technical Overview to:

Presented by Cary Huang

2024-11-06

Agenda

Few words about me.

Why heterogeneous replication to PostgreSQL.

Existing heterogeneous replication tools.

Introduce a new heterogenous tool tailored to PostgreSQL.

Discuss architecture and how it works.

Q&A and future improvements.

Few Words About Cary

• Electrical Engineering graduate from University of British Columbia (UBC) in 2012.

• Worked in the smart metering and energy sector right out of school.

• Joined Highgo Software in 2019 to start my PostgreSQL journey.

• Post-graduate instructor at Peking University to promote PostgreSQL open-source
ecosystem.

• Worked on several aspects of PostgreSQL including sharding enhancements,
distributed database, HA, shared storage, serverless, security..etc.

• Now with Hornetlabs to continue my PostgreSQL journey.

Why do we Need Heterogeneous
Database Replication to PostgreSQL?

Analytics
PostgreSQL is a strong choice for data consolidation for
analytics, reporting, and data warehousing.

Cost Reduction
PostgreSQL is a powerful open-source database to migrate data
to from legacy proprietary databases like SQLServer and Oracle.

Modernization
PostgreSQL’s extensive feature set, along with JSONB, GIS,
geospatial, vector and full-text search that other databases may
lack.
Cross-Platform Integrations
Replicating data from diverse sources into PostgreSQL can
centralize the data for easier and unified application integration.

Options for Heterogeneous Database
Replication to PostgreSQL?

Advantages
• Real-time change data capture (CDC).
• Broad database support.
• Transactional consistency.
• Fault tolerance and scalability with Kafka.
• Decoupled architecture with Kafka in the middle.
• Open-source.

Disadvantages
• Complex setup (Kafka, Kafka Connect, Zookeeper, Kafka Sink)
• Resource intensive.
• Latency from multiple stages (Source -> Kafka topic -> Kafka Sink -> PostgreSQL)
• Schema management and data transform limitations.

Heterogeneous Replication via
Debezium and Kafka

https://debezium.io/documentation/reference/stable/architecture.html

https://debezium.io/documentation/reference/stable/architecture.html

Options for Heterogeneous Database
Replication to PostgreSQL?

Advantages
• Real-time Change Data Capture (CDC).
• Broad database support.
• Transactional consistency.
• Granular control and customization.
• Robust monitoring and management tools
• High availability topologies (active-active, active-passive).

Disadvantages
• High licensing and operational costs.
• Complex setup, configurations.
• High learning curve.
• Limited flexibility with non-Oracle databases.

Options for Heterogeneous Database
Replication to PostgreSQL?

• Both can do real-time Change Data Capture (CDC).

• Both can ensure transactional consistency.

• Both can support broad database types.

• They are not tailored to PostgreSQL (though it is supported).

• They require complex setups and intensive resource requirements.

• They have limited data transform flexibilities for PostgreSQL.

Is there an option more tailored to PostgreSQL?

Introducing ‘SynchDB’ -
A PostgreSQL Extension

• SynchDB is a PostgreSQL extension for synchronizing

data from different heterogeneous database sources –

controlled and managed all within PostgreSQL.

Heterogeneous
Databases Support

Simple State and

Error Provisioning

Real-time Change

Data Capture

High Performance

Open-source and

Community Support

Flexible Data

Transform Rules

Simple Setup and

Installation

DDL and DML

Replications

Concurrent Connector

Workers

How does SynchDB Work?

• Written in C and built as a PostgreSQL extension.

• Powered by Debezium Embedded Engine that grants PostgreSQL:

• Access to heterogeneous database connectors for CDC. (MySQL, Oracle, SQLServer. DB2…et)

• Schema tracking, initial snapshot, offset management…etc.

• No Kafka connect or sink connectors – simplified setup and installation…

But… Debezium is written in Java…

So Java Native Interface (JNI) is required to harness the power of Debezium

SynchDB Architecture

Copyright © 2024 Hornetlabs Technology. All rights reserved.

SynchDB Setup – We Want it Simple

• We envision SynchDB to require

minimum efforts to:

• Install SynchDB to PostgreSQL.

• Get started quickly.

• SynchDB requires JRE version 17+ to

run.

$ sudo dpkg -i postgresql-16-synchdb_

 1.0-1.pgdg22.04_amd64.deb

$ sudo apt install openjdk-17-jre-headless

$ echo "/usr/lib/jvm/java-17-openjdk-amd64/lib/server/" |

 sudo tee /etc/ld.so.conf.d/java.conf

$sudo ldconfig

postgres=# CREATE EXTENSION SYNCHDB CASCADE;

Ready to go

Get Started with SynchDB –
We Want it Simple Too!

SELECT synchdb_add_conninfo(

 'mysqlconn’,  unique connector name

 '127.0.0.1’,  remote hostname

 3306,  remote port

 'mysqluser’,  remote username

 'mysqlpwd’,  remote password

 'inventory’,  remote source database

 'postgres’,  destination database (PG)

 'inventory.orders’,  table to replicate

 'mysql’,  connector type

 'myrule.json’); custom transform rule file

SELECT * from synchdb_state_view;

SELECT synchdb_start_engine_bgw('mysqlconn');

Change data

incoming…

Provision Connector State and Error
We Want it Straightforward!

SELECT connector, conninfo_name, state, err from synchdb_state_view LIMIT 5;

 connector | conninfo_name | state | err

-----------+---------------+---------+----------

 mysql | mysqlconn | syncing | no error

 mysql | mysqlconn2 | stopped | table 1539111: duplicate key value

 violates unique constraint "orders_pkey"

 mysql | mysqlconn3 | paused | no error

 sqlserver | sqlsvrconn | syncing | no error

 sqlserver | sqlsvrconn2 | stopped | Connector configuration is not valid.

 Unable to connect: Access denied for

 user 'mysqluser'@'172.20.0.1' (using

 password: YES)

(5 rows)Resolve the

reported Issue

SynchDB Workflow – Initial Snapshot

Establish

Connection
Determine tables

for capture

Acquire global

read lock on tables
Start transaction:

Repeatable Read

Read current

binlog position
Capture table schema and

persist as schema history

Release global

read lock

Read table data from binlog position

and produce change events

Commit

transaction

Record successful initial snapshot

completion and advance offset

Schema history persists to:

$PGDATA/pg_synchdb

Selected during

connector creation

Offset persists to:

$PGDATA/pg_synchdb

Initial Snapshot is performed when connector is started for the very first time

CDC follows immediately after that.

Add Tables to Replicate in Run-time –
Redo Initial Snapshot?

• After the initial snapshot is completed, SynchDB

knows the structure of selected tables and can

decode subsequent changes applied to it (CDC).

• But…. What if you changed your mind and need to

add more tables to replicate after initial snapshot has

been completed?

• Well… we need to instruct Debezium to redo initial

snapshot on the new table lists. Similar to

PostgreSQL’s REFRESH PUBLICATION.

UPDATE synchdb_conninfo SET

 data = jsonb_set(data, '{table}',

 '"inventory.orders,inventory.products,inventory.customers"')

 WHERE name = 'mysqlconn’;

SELECT synchdb_restart_connector('mysqlconn', 'always’);

Change data

incoming…

Supported Snapshot Modes
Mode Description

always • Always perform initial snapshot (table structures + their data).

• Then CDC begins.

initial (default) • Perform initial snapshot (table structures + their data) if not already done.

• Then CDC begins.

initial_only • Perform initial snapshot (table structures + their data) if not already done.

• Then it will shutdown and will not begin CDC.

no_data • Performs initial snapshot (table structures only, no data) if not already done.

• Then CDC begins.

never • No initial snapshot done

• Just Begins CDC

recovery • Performs snapshot to restore lost or corrupted database schema

• No CDC.

when_needed • Performs initial snapshot only if it cannot detect topic offsets, or previously recorded offset not available on

the server.

SynchDB Workflow – Change Events

Schema history

contains table structure that

Debezium requires to

produce a data change event

Offset Record

contains the offset (similar to LSN

in PG) that Debezium should start

to read change records

Transform Rule File

Tells SynchDB format converter how to transform

incoming table, column, schema names and even

the data before applying to PostgreSQL

SynchDB Workflow – Data Transform

• The transform rule file not only transforms between data types, table names and column names.

• It can do data expression transform as well.

• Useful when the replicated data needs further processing before applying to PostgreSQL.

• Not possible, or not flexible enough if we were built as a middleware outside of PostgreSQL.

Received column data is fed through user-defined

expression before applying to PostgreSQL:

 - %d replaced with data value

 - %w replaced with WKB value (geometry type)

 - %s replaced with SRID value (geometry type)

SynchDB Workflow – Rule File

• Written in JSON and is to be put under $PGDATA.

• Consists of 3 JSON arrays:

• Uses Fully Qualified Name (FQN) to indicate an object to avoid ambiguity.

"transform_datatype_rules":

 [

 {

 "translate_from": "GEOMETRY",

 "translate_from_autoinc": false,

 "translate_to": "TEXT",

 "translate_to_size": -1

 },

 {

 "translate_from": "inventory.geom.g.GEOMETRY",

 "translate_from_autoinc": false,

 "translate_to": "GEOMETRY",

 "translate_to_size": 0

 }

]

"transform_objectname_rules":

 [

 {

 "object_type": "table",

 "source_object": "inventory.orders",

 "destination_object": "schema1.orders"

 },

 {

 "object_type": "column",

 "source_object": "testDB.dbo.customers.first_name",

 "destination_object": "the_awesome_first_name"

 }

]

"transform_expression_rules":

 [

 {

 "transform_from": "inventory.orders.quantity",

 "transform_expression": "case when %d < 500 then 0 else %d end"

 },

 {

 "transform_from": "inventory.geom.g",

 "transform_expression": "ST_SetSRID(ST_GeomFromWKB(decode('%w', 'base64')),%s)"

 }

]

SynchDB Workflow – Fetch Changes

• The Debezium runner engine periodically fetches changes from remote heterogeneous databases.

• The SynchDB extension also periodically fetches changes from the Debezium Runner engine.

• So… we have 2 layers of change propagation before it can be applied to PostgreSQL.

• How to properly coordinate change event propagation becomes important, as to:

• Prevent duplicate records.

• Prevent missing records.

• Re-fetch when error occurs.

• This is similar to PostgreSQL’s replication slot concept to coordinate between publisher and

subscriber where the current LSN is at, and which LSN to resume during restarts.

SynchDB Workflow – Fetch Changes
With Batch Management

• A change record inside a batch is considered

completed when it is successfully applied to

PostgreSQL.

• A completed change record inside a batch allows

Debezium to “advance the offset”.

SynchDB Workflow – Error During
Batch Processing

• In case of error, SynchDB connector worker is still

required to mark a batch as partially completed.

• This causes Debezium runner to partially advance

the offset up until the point of error.

• Upon restart, the first change record inside the first

batch will be the one that caused the error from the

previous run.

SynchDB v1.0Beta

• SynchDB v1.0 Beta is released on our github page here: https://github.com/Hornetlabs/synchdb.

• Documentation page here: https://docs.synchdb.com/.

Heterogeneous

Databases:

• MySQL

• SQLServer

DDLs:

• CREATE TABLE

• DROP TABLE

• ALTER TABLE ADD COLUMN

• ALTER TABLE DROP COLUMN

• ALTER TABLE ALTER COLUMN

DMLs:

• INSERT

• UPDATE

• DELETE

Apply Modes:

• SPI

• HeapAM API

Core Features

• Automatic connector launcher at PostgreSQL startup.

• Global connector state and error provisioning.

• Selective table replication.

• Batch handling.

• Offset management.

• JSON rule fine definition per connector.

• Utility functions to manage connectors.

• 30 concurrent connector workers.

• Connector restart in different snapshot modes.

Transforms:

• Data types

• Table names

• Column names

• Data values

https://github.com/Hornetlabs/synchdb
https://docs.synchdb.com/

SynchDB Future Improvements

• More optimized initial snapshot task (more efficient table data “copying” to PostgreSQL).

• Support more authentication methods such as TLS or via third-party auth apps (RADIUS, GSSAPI…etc).

• More heterogeneous databases support. (Oracle, db2…etc)

• Obtain performance figures and tuning.

• More error handling configurations. (skip error records or exit on error…etc).

• Include transaction boundaries in change events to optimize apply. (multi-inserts…etc).

• Selective operations: (ignore update, insert or delete…etc).

• More DDLs: CREATE INDEX, TRUNCATE…etc.

• Strict query ordering with transaction metadata.

• … many more waiting to be discovered!

Join SynchDB development on github to make it better together!

https://github.com/Hornetlabs/synchdb.

https://github.com/Hornetlabs/synchdb

Thank You!

	Default Section
	Slide 1
	Slide 2: Agenda
	Slide 3: Few Words About Cary
	Slide 4: Why do we Need Heterogeneous Database Replication to PostgreSQL?
	Slide 5: Options for Heterogeneous Database Replication to PostgreSQL?
	Slide 6: Heterogeneous Replication via Debezium and Kafka
	Slide 7: Options for Heterogeneous Database Replication to PostgreSQL?
	Slide 8: Options for Heterogeneous Database Replication to PostgreSQL?
	Slide 9: Introducing ‘SynchDB’ - A PostgreSQL Extension
	Slide 10: How does SynchDB Work?
	Slide 11: SynchDB Architecture
	Slide 12: SynchDB Setup – We Want it Simple
	Slide 13: Get Started with SynchDB – We Want it Simple Too!
	Slide 14: Provision Connector State and Error We Want it Straightforward!
	Slide 15: SynchDB Workflow – Initial Snapshot
	Slide 16: Add Tables to Replicate in Run-time – Redo Initial Snapshot?
	Slide 17: Supported Snapshot Modes
	Slide 18: SynchDB Workflow – Change Events
	Slide 19: SynchDB Workflow – Data Transform
	Slide 20: SynchDB Workflow – Rule File
	Slide 21: SynchDB Workflow – Fetch Changes
	Slide 22: SynchDB Workflow – Fetch Changes With Batch Management
	Slide 23: SynchDB Workflow – Error During Batch Processing
	Slide 24: SynchDB v1.0Beta
	Slide 25: SynchDB Future Improvements
	Slide 26

