
Keeping Open Source Open

POSTGRESQL Replication
Conflicts: Avoiding Pitfalls

Hamid Quddus Akhtar

Percona

© 2022 Percona

● More than two decades of professional software
development.

● I’m part of Percona:
○ Percona has amazing culture.

● Prior to joining Percona, I had worked
○ HighGo, and

○ EnterpriseDB.

About Myself

2

© 2022 Percona

● Email:
○ hamid.akhtar@percona.com

● LinkedIn:
○ https://www.linkedin.com/in/engineeredvirus/

● Skype:
○ EngineeredVirus

● WhatsApp
○

Contacts

3

mailto:hamid.akhtar@percona.com
https://www.linkedin.com/in/engineeredvirus/

Initial Thoughts

© 2022 Percona

Replication Issues?

5

© 2022 Percona

● Reliable replication scheme requires:
○ Optimal configuration,

○ Query monitoring,
○ Analysis of relevant statistic view/relations,
○ Cool failover/switchover handling.

● And obviously, understanding and managing risks.

Replication Issues - Overview

6

© 2022 Percona

Types of Replication Issues Faced

7

What to Expect From This Talk

© 2022 Percona

● Talk scope is limited to:
○ Synchronous streaming replication conflicts in context of

pg_stat_database_conflicts

● What PostgreSQL Offers:
○ Catalogs and Views,
○ Configuration Parameters.

● Identification of Replication Conflicts by PostgreSQL Server

Presentation Outline

9

Replication Catalogs and Configuration

© 2022 Percona

● Relevant System Catalogs and Views
○ [Primary] pg_stat_replication
○ [Standby] pg_stat_wal_receiver
○ [Standby] pg_stat_database_conflicts

Replication: PostgreSQL Out of the Box

11

© 2022 Percona

● Configuration Parameters
○ Sending Server:

■ max_wal_senders, max_replication_slots, wal_keep_size,
max_slot_wal_keep_size, wal_sender_timeout,
track_commit_timestamp.

○ Primary Server:
■ synchronous_standby_names, vacuum_defer_cleanup_age

○ Standby Server:
■ primary_conninfo, primary_slot_name, promote_trigger_file,

hot_standby, max_standby_archive_delay,
wal_receiver_create_temp_slot, wal_receiver_status_interval,
hot_standby_feedback, wal_receiver_timeout,
wal_retrieve_retry_interval, recovery_min_apply_delay

Replication: PostgreSQL Out of the Box

12

Identification of Replication Conflicts by
PostgreSQL Server

© 2022 Percona

● Server version 14.x built from source on CentOS 7
○ One primary, and
○ One standby.

● Let’s generate some database conflicts:
○ Lock conflict, and
○ Snapshot conflict.

Replication: Configuration

14

© 2022 Percona

Replication: Lock Conflict

15

Primary Server Standby
CREATE TABLE lock_test
AS
(SELECT generate_series(1, 100) AS id);

BEGIN;
SELECT * FROM lock_test WHERE id < 5;

DROP TABLE lock_test;

<Wait for max_standby_streaming_delay to
expire>

SELECT * FROM lock_test WHERE id < 5;

FATAL: terminating connection due to
conflict with recovery
DETAIL: User was holding a relation
lock for too long.
...

© 2022 Percona

Replication: Lock Conflict

16

Primary Server Standby Server
SELECT datid, datname, confl_lock
FROM pg_stat_database_conflicts
WHERE datname = CURRENT_DATABASE();

 datid | datname | confl_lock
-------+-----------+------------
 13892 | postgres | 1

© 2022 Percona

● Start XLog Processing

● Acquire Access Exclusive Lock(s)

○ Acquire session lock,

● Identify conflicting backends.

● Sleep on the Lock

○ Wait for other transactions to release it or for timeout to occur
(GetStandbyLimitTime),

○ Lots and lots of checks here.

● Resolve Recovery Conflict With Lock

○ Issue signals to kill all backends causing the deadlock.

Lock Conflict - Code Flow

17

© 2022 Percona

● Use the available resources to set up health parameters:
○ pg_stat_activity and pg_locks:

■ Join on pid to identify connections that are holding locks:

■ pg_stat_activity provides timestamps for connection start, transaction
start, and query start.

■ So transaction aging can be identified.

● [Standby] max_standby_streaming_delay
○ Consider max age for transactions and tune this parameter

accordingly.

Lock Conflicts - GUCs and Data That Matter

18

© 2022 Percona

Replication: Snapshot Conflicts

19

Primary Server Standby Server
CREATE TABLE snap_test AS
(SELECT generate_series(1, 100) AS id);

BEGIN;
DECLARE c CURSOR FOR
SELECT * FROM snap_test;
FETCH c;

DELETE FROM snap_test WHERE id % 3 = 0;
VACUUM snap_test;

FETCH c;

FATAL: terminating connection due to
conflict with recovery
DETAIL: User query might have needed to
see row versions that must be removed.
...

© 2022 Percona

Replication: Snapshot Conflicts

20

Primary Server Standby Server
SELECT datid, datname, confl_snapshot
FROM pg_stat_database_conflicts
WHERE datname = CURRENT_DATABASE();

 datid | datname | confl_snapshot
-------+----------+----------------
 13892 | postgres | 1

© 2022 Percona

● Start XLog Processing

● Prepare for performing required heap (access method)
operation.

○ Heap cleanup in this particular case.

● Identify conflicting backends.

● Resolve Recovery Conflict With Snapshot

○ Wait for other transactions to release it or for timeout to occur
(GetStandbyLimitTime),

○ Issue signals to kill all conflicting backends.

Snapshot Conflicts - Code Flow

21

© 2022 Percona

● [Primary] vacuum_defer_cleanup_age

○ Not honored if manual vacuum command is issued.

● [Standby] hot_standby_feedback

○ Eliminates query cancels because of cleanup operations.

○ Works with cascaded standbys.

Snapshot Conflicts - GUCs That Matter

22

Percona stands for evolution

Percona stands for ease-of-use

Percona stands for freedom

Percona & PostgreSQL - Better Together

Thank you!

Questions?

