Postgres :
A Graph Database



* Noodling around with *gres since Ingres

« SysAdmin, DBA, Engineer

- System / Software / Storage / Data Architect
« Husband & Dad
* Lego enthusiast
« Ski bum

Pivotal



Agenda

B Graphs Overview (why & why not)
B Postgres Solution

m Application Highlight

IWASCH Proouk /mm
:

Pivotal



Overview



Graphs

One or many of same entity type are related
Person has friend(s)
Person shares pictures & posts

Person likes picture / posts

Person tagged in picture

@) (2) () (%) (7)
e Schema-free, loose typing and all
e e a entities treated equally

: : foor

Pivotal



Technologies

NoSQL
® Neodj
® ArangoDB
® AgensGraph (Postgres based)
® OrientDB
® RedisGraph
® Amazon Neptune

® Azure Cosmos DB

Pivotal

Be aware of:

Scaling limited or unproven

Some mixed reviews and stability questionable
API's are not standard

SQL-like, Cypher & custom languages
Limitations of secondary indexes

Consistency : Eventual

Many better used as a document database

Don't be pulled in by data UX



Understand the problem you are trying to solve.

Pivotal



When To Use Graph Databases

® Datais not well defined or at all

® Relationships and attributes are evolving

® Closed loops and identification of are required

Pivotal



When To Not Use Graph Databases

® Data and relationships are well defined and understood
@ Relationships do not exist (is it analytic?)

® High value use case involves:
o Bulk scans
o Key-value store

o No start or end point in queries
® Textor BLOBS are used as edge attributes

® You were won over by a wiz-bang visualization

Pivotal



Postgres Solution



Relational Database

Different entities connected via foreign keys
® Oneto One - Organizations has Parent
orgs o JOIN orgs p ON o.id = p.parent id
® Oneto Many — User belongs to Groups
users u JOIN groups users g ON u.id = g.user id

® Many to Many — Groups belong to Groups

groups_groups gl JOIN groups groups g2 ON gl.gl id = g2.g2 id

Is not Many:Many the requirement leading to a graph db?

Pivotal



Graph in SQL

CREATE SEQUENCE entities id seq;

CREATE TABLE entities( CREATE VIEW nodes AS
id int8 PRIMARY KEY DEFAULT nextval ('entities id seq'), SELECT * FROM entities;
created timestamp DEFAULT now(),
name varchar (32) NOT NULL, CREATE VIEW edges AS
stuff varchar (32) SELECT * FROM relationships;

)7
CREATE SEQUENCE relationships id seq;

CREATE TABLE relationships(
id int8 PRIMARY KEY DEFAULT nextval ('relationships id seq'),
created timestamp DEFAULT now (),
entity a 1int8 REFERENCES entities (id)
ON UPDATE CASCADE ON DELETE CASCADE,
entity b 1int8 REFERENCES entities (id)
ON UPDATE CASCADE ON DELETE CASCADE,
reltype varchar (32) NOT NULL
);

Pivotal



Recursion

WITH RECURSIVE
® Introduced in PostgreSQL 8.4 circa 2009

® Available in Greenplum 5 (beta) & 6 (prod)

® Provides ability to

@)

@)

Pivotal

Implement trees or other hierarchical forms
Path enumeration

Find shortest path (Traveling Salesman)
Find paths based upon other criteria

And many others

WITH RECURSIVE path
(id, name, parent id, depth) AS (
-- Seed / root / parent
SELECT t.id, t.name, t.parent id,
1 AS depth
FROM tree t
WHERE t.id = START

UNION ALL

-- Children of parent
SELECT p.id, p.name, p.parent id,
p.depth + 1 AS depth
FROM path p, tree t
WHERE p.id = t.parent_id
)
SELECT * FROM path
ORDER BY id



Implementation Considerations

® Graph type
® Tree/directional
® Are cycles permissible
@ Effective dating giving a historical perspective

® Imagine a 3D tree where a slice is defined by a time range and include links
between slices

® Use weights, measures and other attributes to describe edges and use in queries
® Boston to New York is 215 miles by I-90

® Bike path is paved, packed dirt, or gravel

Pivotal



Common Graph Traversals & Tools

Very general traversal can be time consuming, implement safeguards
Shortest Path (SP)

Single Source Shortest Path (SSSP)

Hyperlink Induced Topic Search (HITS)

Page Rank

Weakly Connected Components

Measures & weights of relationship

® Apache MADIib, PostGIS, pgRouting, Boundless Desktop

o MADIib great but can be expensive (All-Pairs-Shortest-Path)

Pivotal



Implementation Considerations - Relationships

® Edge/ Relationship Types (likes, friends, tagged, connection, ...
® Embed as text
® Create an ENUM
® Separate lookup table for relationship type (FOREIGN KEY)
L

Separate table / partition for each type of relationship

CREATE TABLE relationships(
id int8 PRIMARY KEY DEFAULT nextval('relationships id seq'),
created timestamp DEFAULT now(),
entity a 1int8 REFERENCES entities (id)
ON UPDATE CASCADE ON DELETE CASCADE,
entity b 1int8 REFERENCES entities (id)
ON UPDATE CASCADE ON DELETE CASCADE,
reltype varchar (32) NOT NULL
);

Pivotal



Query Considerations

® Multi-directional edges
® May be tempted to (entity_a OR entity_b)
® Recommend directional over bi- or multi-
® Watch for cycles (endless recursion)
® Very deep graphs (many, many 100,000's of edges in possible results), YMMV
® Always include starting point and destination in query
® Duplicate relationships, use UNIQUE(id1, id2)

® Implement safeguards in data creation and queries!

Pivotal



Pivotal

CREATE OR REPLACE FUNCTION find path depth distance (

start int, destination int, ERJCEIS4 %R

) RETURNS TABLE (depth int, distance int, path integer[])

BEGIN
RETURN QUERY

WITH RECURSIVE search path(id,

link, depth, distance,

route,

AS $S

cycle) AS (

SELECT p.locl id AS id, p.loc2 id AS link, EEEEGEIR.,

FROM
WHERE

UNION ALL
SELECT

FROM
WHERE
AND
)
SELECT sp.depth,
FROM
WHERE
AND
ORDER
END;

p.distance AS distance, ARRAY[p.locl id] AS route,

paths p

p.locl id = start AND p.active

p.locl id AS id, p.loc2 id AS link, EjsieCyei=l iy Ve,

p.distance + sp.distance AS distance,
p.locl id = ANY (route)

paths p,
p.locl id =

sp.distance,
search path AS sp

link = destination

NOT cycle
BY depth ASC,

$$ LANGUAGE 'plpgsqgl';

search path sp
sp.link AND p.active AND NOT cycle

sp.depth + 1 <= max depth

(sp.route

AS cycle

sp.link)

distance ASC;

route

AS route

false AS cycle

|| p.locl id AS route,



Query Optimizations

Pivotal

Index on edge / relationship id columns

Limit number of relationship (edge) types and index if necessary
o If types stored in static lookup table, CLUSTER

Index on primary filter predicates (duh)

o Spatial index (GIST), range limiting (BRIN), pg_trgm (USING GIST (txt
gist_trgm_ops))

B pg_trgm GUCs similarity_threshold, word_similarity_threshold,
strict_word_similarity_threshold

PREPARE the statement if pattern used repeatedly
Use functions for well known traversal patterns

Consider a materialized view if query is often repeated on subset of data



Application Highlight


https://catmaid.readthedocs.io/en/stable/

HHMI Janelia Research Campus

® PostgreSQL journey started in 2009 with smaller data sets

® PostGIS added as data grew and faster and more correct intersections in 3D from
different orthogonal perspectives

® Today, heavily reliant on PostgreSQL 11 and PostGIS 2.5

@ Spatial (geom), z-Range (gist) and pg_trm indexes modeling neurons by directed
interconnected nodes where each nodes references its parent (trees)

@ Full adult fruit fly brain resulting in 780 GB database with Y800,000,000 edges

o Sum of all edges amount to 190 meters... remember they're dealing in
nanometers

Sources:
Tom Kazimiers, Senior Software Engineer, HHMI Janelia Research Campus
https://ai.qoogleblog.com/2019/08/an-interactive-automated-3d.html

Pivotal


https://ai.googleblog.com/2019/08/an-interactive-automated-3d.html

HHMI : Neuron Reconstruction Over Time

AR

Source:
https://twitter.com/tomkazimiers/media

Pivotal


https://twitter.com/tomkazimiers/media

HHMI : Adult Fruit Fly

Source:
https://catmaid.virtualflybrain.org/

Pivotal


https://catmaid.virtualflybrain.org/

Transforming How The World Builds Software
And Software Needs Data

© Copyright 2019 Pivotal Software, Inc. All rights Reserved.



