
© Copyright 2019 Pivotal Software, Inc. All rights Reserved.

Version 1.0
Updated July 2019

Postgres :
A Graph Database



• Noodling around with *gres since Ingres

• SysAdmin, DBA, Engineer

• System / Software / Storage / Data Architect

• Husband & Dad

• Lego enthusiast

• Ski bum

Greg Spiegelberg

Pivotal 
Senior Account Data 
Engineer
(aka sales)



Cover w/ Image

Agenda

■ Graphs Overview (why & why not)

■ Postgres Solution

■ Application Highlight



Overview



Graphs

One or many of same entity type are related

● Person has friend(s)

● Person shares pictures & posts

● Person likes picture / posts

● Person tagged in picture Bob Bill

Francis

Pic PostKnows

PostsShares

Tags Likes

1 2 3

4 5 6

7 8 9

1

2 3

4

5 6

7 8 9
1

23

4

5

6 7
8

9

Schema-free, loose typing and all 
entities treated equally



Technologies

NoSQL

● Neo4j

● ArangoDB

● AgensGraph (Postgres based)

● OrientDB

● RedisGraph

● Amazon Neptune

● Azure Cosmos DB

Be aware of:

● Scaling limited or unproven

● Some mixed reviews and stability questionable

● API's are not standard

● SQL-like, Cypher & custom languages

● Limitations of secondary indexes

● Consistency : Eventual

● Many better used as a document database

● Don't be pulled in by data UX



Understand the problem you are trying to solve.



When To Use Graph Databases

● Data is not well defined or at all

● Relationships and attributes are evolving

● Closed loops and identification of are required



When To Not Use Graph Databases

● Data and relationships are well defined and understood

● Relationships do not exist (is it analytic?)

● High value use case involves:

○ Bulk scans

○ Key-value store

○ No start or end point in queries

● Text or BLOBS are used as edge attributes

● You were won over by a wiz-bang visualization



Postgres Solution



Relational Database

Different entities connected via foreign keys
● One to One – Organizations has Parent

orgs o JOIN orgs p ON o.id = p.parent_id

● One to Many – User belongs to Groups

users u JOIN groups_users g ON u.id = g.user_id

● Many to Many – Groups belong to Groups

groups_groups g1 JOIN groups_groups g2 ON g1.g1_id = g2.g2_id

Is not Many:Many the requirement leading to a graph db?

1

2 3

4

7 8 9

5 6

Parent

Organizations

Groups

Users



Graph in SQL

CREATE SEQUENCE entities_id_seq;

CREATE TABLE entities(
id       int8 PRIMARY KEY DEFAULT nextval('entities_id_seq'),
created  timestamp DEFAULT now(),
name     varchar(32) NOT NULL,
stuff    varchar(32)

);

CREATE SEQUENCE relationships_id_seq;

CREATE TABLE relationships(
id        int8 PRIMARY KEY DEFAULT nextval('relationships_id_seq'),
created   timestamp DEFAULT now(),
entity_a int8 REFERENCES entities(id)

ON UPDATE CASCADE ON DELETE CASCADE,
entity_b int8 REFERENCES entities(id)

ON UPDATE CASCADE ON DELETE CASCADE,
reltype varchar(32) NOT NULL

);

CREATE VIEW nodes AS
SELECT * FROM entities;

CREATE VIEW edges AS
SELECT * FROM relationships;

Bob Bill

Francis

Pic PostKnows

PostsShares

Tags Likes



Recursion

WITH RECURSIVE
● Introduced in PostgreSQL 8.4 circa 2009

● Available in Greenplum 5 (beta) & 6 (prod)

● Provides ability to

○ Implement trees or other hierarchical forms

○ Path enumeration

○ Find shortest path (Traveling Salesman)

○ Find paths based upon other criteria

○ And many others

WITH RECURSIVE path
(id, name, parent_id, depth) AS (
-- Seed / root / parent
SELECT t.id, t.name, t.parent_id,

1 AS depth
FROM tree t

WHERE t.id = START

UNION ALL

-- Children of parent
SELECT p.id, p.name, p.parent_id,

p.depth + 1 AS depth
FROM path p, tree t

WHERE p.id = t.parent_id
)
SELECT * FROM path
ORDER BY id



Implementation Considerations

● Graph type

● Tree / directional

● Are cycles permissible

● Effective dating giving a historical perspective

● Imagine a 3D tree where a slice is defined by a time range and include links 
between slices

● Use weights, measures and other attributes to describe edges and use in queries

● Boston to New York is 215 miles by I-90

● Bike path is paved, packed dirt, or gravel



Common Graph Traversals & Tools

● Very general traversal can be time consuming, implement safeguards

● Shortest Path (SP)

● Single Source Shortest Path (SSSP)

● Hyperlink Induced Topic Search (HITS)

● Page Rank

● Weakly Connected Components

● Measures & weights of relationship

● Apache MADlib, PostGIS, pgRouting, Boundless Desktop

○ MADlib great but can be expensive (All-Pairs-Shortest-Path)



Implementation Considerations - Relationships

● Edge / Relationship Types (likes, friends, tagged, connection, …)

● Embed as text

● Create an ENUM

● Separate lookup table for relationship type (FOREIGN KEY)

● Separate table / partition for each type of relationship

CREATE TABLE relationships(
id        int8 PRIMARY KEY DEFAULT nextval('relationships_id_seq'),
created   timestamp DEFAULT now(),
entity_a int8 REFERENCES entities(id)

ON UPDATE CASCADE ON DELETE CASCADE,
entity_b int8 REFERENCES entities(id)

ON UPDATE CASCADE ON DELETE CASCADE,
reltype varchar(32) NOT NULL

);



Query Considerations

● Multi-directional edges

● May be tempted to (entity_a OR entity_b)

● Recommend directional over bi- or multi-

● Watch for cycles (endless recursion)

● Very deep graphs (many, many 100,000's of edges in possible results), YMMV

● Always include starting point and destination in query

● Duplicate relationships, use UNIQUE(id1, id2)

● Implement safeguards in data creation and queries!



CREATE OR REPLACE FUNCTION find_path_depth_distance(
start int, destination int, max_depth int

) RETURNS TABLE(depth int, distance int, path integer[]) AS $$
BEGIN
RETURN QUERY
WITH RECURSIVE search_path(id, link, depth, distance, route, cycle) AS (

SELECT p.loc1_id AS id, p.loc2_id AS link, 1 AS depth,
p.distance AS distance, ARRAY[p.loc1_id] AS route, false AS cycle

FROM paths p
WHERE p.loc1_id = start AND p.active

UNION ALL
SELECT p.loc1_id AS id, p.loc2_id AS link, sp.depth + 1 AS depth,

p.distance + sp.distance AS distance, route || p.loc1_id AS route,
p.loc1_id = ANY(route) AS cycle

FROM paths p, search_path sp
WHERE p.loc1_id = sp.link AND p.active AND NOT cycle
AND sp.depth + 1 <= max_depth

)
SELECT sp.depth, sp.distance, (sp.route || sp.link) AS route

FROM search_path AS sp
WHERE link = destination
AND NOT cycle

ORDER BY depth ASC, distance ASC;
END;
$$ LANGUAGE 'plpgsql';



Query Optimizations

● Index on edge / relationship id columns

● Limit number of relationship (edge) types and index if necessary

○ If types stored in static lookup table, CLUSTER

● Index on primary filter predicates (duh)

○ Spatial index (GIST), range limiting (BRIN), pg_trgm (USING GIST(txt 
gist_trgm_ops))

■ pg_trgm GUCs similarity_threshold, word_similarity_threshold, 
strict_word_similarity_threshold

● PREPARE the statement if pattern used repeatedly

● Use functions for well known traversal patterns

● Consider a materialized view if query is often repeated on subset of data



Application Highlight

CATMAID
https://catmaid.readthedocs.io/en/stable/

https://catmaid.readthedocs.io/en/stable/


HHMI Janelia Research Campus

● PostgreSQL journey started in 2009 with smaller data sets

● PostGIS added as data grew and faster and more correct intersections in 3D from 
different orthogonal perspectives

● Today, heavily reliant on PostgreSQL 11 and PostGIS 2.5

● Spatial (geom), z-Range (gist) and pg_trm indexes modeling neurons by directed 
interconnected nodes where each nodes references its parent (trees)

● Full adult fruit fly brain resulting in ~780 GB database with ~800,000,000 edges

○ Sum of all edges amount to 190 meters… remember they're dealing in 
nanometers

Sources:
Tom Kazimiers, Senior Software Engineer, HHMI Janelia Research Campus
https://ai.googleblog.com/2019/08/an-interactive-automated-3d.html

https://ai.googleblog.com/2019/08/an-interactive-automated-3d.html


HHMI : Neuron Reconstruction Over Time

Source:
https://twitter.com/tomkazimiers/media

https://twitter.com/tomkazimiers/media


HHMI : Adult Fruit Fly

Source:
https://catmaid.virtualflybrain.org/

https://catmaid.virtualflybrain.org/


Transforming How The World Builds Software
And Software Needs Data

© Copyright 2019 Pivotal Software, Inc. All rights Reserved.


